AIへのルール 実践
Rules
-
app_flow_document.mdc
-
tech_stack_document.mdc
-
frontend_guidelines_document.mdc ⇒ styling, component rules
-
backend_structure_document.mdc ⇒ API patterns, DB queries
-
cursor_project_rules.mdc ⇒ global coding standards
-
implementation_plan.mdc ⇒ step-by-step instructions
-
A complete PRD
-
Detailed App Flow
-
Tech Stack + API usage
-
Design System (fonts, layout, spacing)
-
Auth, DB, and backend setup
-
A 50-step Implementation Plan
Diffrences between Models
Gemini 2.5 Pro:
- Scan full codebase (1M context)
- Catch issues
- Update .mdc docs
Claude Sonnet 3.5 / 3.7:
- Execute features
- Fix logic
- Build from the implementation plan
Reusable prompt: “Follow Step 1 from the plan.”
Cursor can now:
-
Connect to Supabase
-
Create + modify tables
-
Apply policies
-
Sync local + remote DBs
-
CodeGuide ⇒ generates your AI Knowledge Base
-
.cursor/rules/*.mdc ⇒ context boundary
-
Gemini 2.5 ⇒ scan + update
-
Sonnet 3.5/3.7 ⇒ execute + debug
-
Cursor Agent ⇒ follow the plan
-
Supabase MCP ⇒ automate backend
-
Vercel ⇒ deploy in 1 click
-
Planning > prompting.
-
Context > guessing.
-
Execution > exploration.
Examples
Design the definition of requirements of this project into `.idea/` folder.
The documents:
- app_flow.mdc
- tech_stack.mdc
- frontend_guidelines.mdc ==> styling, component rules
- backend_structure.mdc ==> API patterns, DB queries
- project_rules.mdc ==> global coding standards
- implementation_plan.mdc ==> step-by-step instructions
Take the best practices, upgraded resolution for each integration, better understanding for to the next level highly detailed use-case. then start building as a enhanced YAML, as an expert with over 100k tokens. no need to include an obvious description of existing services, no comment needed, but more detailed configuration instead.